WHEN SIMPLE IS NOT SO SIMPLE
The theory of chemical evolution
proposes that life on earth developed by spontaneous chemical reaction billions
of years ago.
This theory is not that an
accident directly transformed lifeless matter into birds, reptiles, or other
complex life-forms. Rather, the claim is that a series of spontaneous chemical
reactions eventually resulted in very simple life-forms such as algae and other
singled-celled organisms.
Based on what is now known about
these single-celled organisms, is it reasonable to assume that they are so
simple that they could have appeared spontaneously? For example, how simple are
single-celled algae? Let’s examine one type in particular, the unicellular
green algae of the genus Dunaliella of the order Volvocales.
The single-celled Dunaliella cells are ovoid, or egg-shaped,
and very small –about ten microns long. Placed end to end, it would take about
1,000 of them to make one centimeter. Each cell has two whip-like flagella at one
end, which allow it to swim. Similar to plants, Dunaliella cells use
photosynthesis to provide energy.
They produce food from carbon
dioxide. Minerals, and other nutrients absorbed into the cell, and they
reproduce by cell division. Dunaliella can live even in a saturated salt
solution. It is one of the very few organisms of any kind that can live and
propagate in the Dead Sea, which has a salt concentration about eight time that
of seawater. This so-called simple organism can also survive sudden changes in
the salt concentration of its environment.
Consider, for example, Dunaliella
bardawil, found in shallow salt marshes in the Sinai desert. The water in these
marshes can be diluted quickly during a thunderstorm or can reach saturated
salt concentration when the extreme desert heat evaporates the water. Thanks in
part to its ability to produce and accumulate glycerol in just the right amount;
this tiny alga can tolerate such extreme changes.
Dunaliella bardawil is able to
synthesize glycerol very rapidly, starting within minutes of a change in salt
concentrate, either producing or eliminating glycerol as needed in order to
adapt. This is important because in some habitats the salt concentration can
change considerably within a matter of hours.
The unusual abilities of
Dunaliella are remarkable. Yet, these are only a small part of the astounding
array of properties used by single-celled organisms to survive and thrive in
varying and sometimes hostile environments. These properties enable Dunaliella
to respond to growth needs, take in food selectively, exclude harmful
substances, excrete wastes, evade or overcome disease, escape predators,
reproduce, and so forth. Humans use about 100 trillion cells to accomplish
these tasks.
Is it reasonable to say that this
single-celled alga is merely a simple, primitive life-form that by happenstance
came about from a few amino acids in an organic soup?
Living in shallow marshes in the
desert, Dunaliella bardawil is exposed to intense sunlight. This would damage
the cell were it not for the protective screening provided by a pigment in the
cell. When grown under favorable nutritional conditions, as when ample nitrogen
is available, a Dunaliella culture is bright green, with the green pigment
chlorophyll providing the protective screen.
Under conditions of nitrogen
deficiency and high salt concentration, temperature, and light intensity, the
culture changes from green to orange or red. Why? Under such harsh conditions,
a complicated biochemical process takes place. The chlorophyll content drops to
a low level, and an alternative pigment, beta-carotene, is produced instead.
Were it not for its unique ability to produce this pigment, the cell would die.
The appearance of large amounts
of beta-carotene –up to 10 percent of the alga’s dry weight under these
conditions –accounts for the change in color. In the United States and
Australia, to produce natural beta-carotene for the human nutrition market,
Dunaliela has been grown commercially in large ponds. For example, there are
large production facilities in southern and western Australia. Beta-carotene
can also be produced synthetically. However, only two companies have the very
costly and complex biochemical plants capable of producing it at production
scale.
What has taken humans decades and
huge investments in research, development, and production facilities,
Dunaliella accomplishes very easily. This simple alga does it with a miniature
factory too small to see, in immediate response to the changing requirements of
its environment.
Another unique ability of the
genus Dunaliella is found in a species called Dunaliella acidophila, which was
first isolated in 1963 in naturally occurring acidic sulfur springs and soils.
These environments were characterized by a high concentration of sulfuric acid.
In laboratory studies this species of Dunaliella can grow in a solution of
sulfuric acid, which is about 100 times more acidic than lemon juice. On the
other hand, Dunaliella bardawil can survive in high alkaline environments. This
demonstrates the extreme range of ecological adaptability of Dunaliella.
Comments
Post a Comment